
Python Tutor
Philip Guo (2013)

Visualizes the data structures and execution of programs. Runs on the web, is embeddable, and 
has achieved a degree of widespread use.

This project points to ways in which 
software description, data, and behavior, 
can be represented and made tangible as 
deeply and vivaciously interlinked 
representations.

Python Tutor is a popular example of a multi-decade endeavor in computer science: program 
visualization system for pedagogic ends. It also overlaps with another effort called software 
visualization. Even the Atari 2600 had a BASIC cartridge exhibiting such characteristics, made 
by Warren Robinett, the creator of Adventure (2600) and Rocky’s Boots (Apple II).

Some observations I pulled from surveys by Sorva and others (see references below):
• User motivation and engagement is critical. Sorva et al. (2013) argues that a constructionist 
orientation is desirable: learners are “makers who want to build things,” which “can be 
harnessed for better learning.”
• Level of abstraction of representation is an important choice. Are algorithms or program 
execution represented? Abstractions chosen reflect the aims of the system builders.
• Emphasis tends to be on generic representations. What if, instead, we allowed that special 
cased visual designs, perhaps by the programmer, were worthwhile?

For good surveys, see:
• Sorva, Juha. Visual Program Simulation in Introductory Programming Education. Aalto University, 2012.
• Sorva, Juha, Ville Karavirta, and Lauri Malmi. “A Review of Generic Program Visualization Systems for Introductory 
Programming Education.” ACM Transactions on Computing Education (TOCE) 13, no. 4 (2013): 15.
See also:
• Guo, Philip J. “Online Python Tutor: Embeddable Web-Based Program Visualization for Cs Education.” In 
Proceeding of the 44th ACM Technical Symposium on Computer Science Education, 579–584. ACM, 2013.


